
複数センサに対応したBluetooth通信のためのフレームワークの提案
橋浦研究室 122D019 榎本真大 122D006 阿部寿樹哉

1 はじめに
マイコンから複数のセンサデータを Bluetooth Low

Energy（BLE）で送信する際,高頻度の通信周期を要
求するセンサを含むと送信遅延が増大し,要求周期に
間に合わなくなるという問題が生じる. 特に送信処理
を同期的に実装した場合,すべての処理が直列に実行
されるため,この問題が顕著に表れる. このような問
題に対し,非同期処理による実装を用いると CPU が
スリープせず処理を並行実行できるため,処理能力の
向上が期待できる一方で,多数のセンサごとに異なる
送信周期を非同期に管理しつつプログラムを実装・保
守することは容易ではないという問題が生じる. そこ
で,本研究では BLE 通信における非同期送信処理の
周期制御をスケジューラによって自動化するフレーム
ワークを提案する.

2 研究目的
本研究の目的は,複数センサ混在環境で,高頻度セ
ンサを使用可能にすることである. これと同時に,非
同期処理による BLE送信プログラムの実装難易度低
下と実装の信頼性を向上させる. 特に,非同期処理の
プログラミング経験がない初心者を主な対象とする.

3 提案手法
実行タイミングの管理をスケジューラに任せ,それ
をフレームワークとする. フレームワークの概要を図
1に示す

図 1: フレームワークの概要
4 実験と評価方法
以下のリサーチクエスチョン (以降 RQ)に回答す
るため,3つの実験により提案フレームワークの有効性
を検証する.
• RQ1: 提案フレームワークは，同周期，同優先度
のセンサにおいて，公平性がある通信を実現させ
るか

• RQ2: 提案フレームワークは, 優先度による制御
は高負荷環境での高頻度センサの周期の安定性を
向上させるか

• RQ3: 提案フレームワークは，複数センサを用い
た BLE非同期通信プログラムの実装難易度を低
下させるか

• RQ4: 提案フレームワークは，作成されるコード
の信頼性を向上させるか

4.1 実験 1：フレームワーク性能調査
RQ1およびRQ2に回答するため，合計 13個のセン
サタスクを単一のマイコン上で同時に動作させ,BLE
通知の実測周期に基づく性能評価を行った．評価手順
として，送信側（マイコン）にて送信時刻（µs）を付
与したデータをWebアプリへ送信して時系列に記録
し，連続する通知の到着時刻差から実測周期 dti と締
め切りミス率 [1]を算出する. 評価指標には，実測周
期の統計量（平均，標準偏差，最大値等）に加え，締
め切りミス率,理論周期 P に対する無次元量 dti/P

を用いて分析した．
4.2 実験 2：被験者による実装
被験者を提案フレームワークあり群となし群に分け，

BLEセンサ通信の実装課題を行わせ,提出された実装
コードを比較評価する. 評価指標として，MI [2]，初
期化用メソッドを無効グラフの頂点から除くように改
良した LCOM4 [3](以降 LCOM4-NI)，非同期処理の
難易度を表す指標 APCCを定義して用いた．APCC
はOSSを分析し,非同期欠陥との正の相関が確認され
ている．MIと APCCにより RQ3を,LCOM4-NIに
より RQ4を評価する．
5 実験結果と考察
5.1 実験 1の結果と考察

図 2: 締め切りミス率 [1]:FWあり vsFWなし
すべての同周期かつ同優先度のセンサ間の平均実
測周期の差に有意差が見られなかったため，優先度制
御により公平性が保たれていることが示された. さら
に,同周期で異なる優先度のセンサ間の平均実測周期
において，優先度の高いセンサの平均実測周期が t検
定の結果，有意に短くなっていたことから優先度によ
る制御が適切に行われていることが示された. また,
設計上のトレードオフとして，高頻度センサを優先し
た際に低頻度センサの締め切りミス率が上昇する傾向
が確認されたさらに，同周期センサにおけるフレーム
ワークあり／なしの比較として実測周期の平均値を用

G-5

217

いた分析を行ったところ，フレームワークで優先度を
高く設定したセンサは締め切りミス率が低下し，優先
度付与の有効性が t 検定により支持された．一方で，
高頻度センサを複数接続させた環境では,締め切りミ
ス率が約 37%あり,周期の安定性が低い．そこで高頻
度センサ何個までが安定するかを,最高優先度の単一
高頻度センサの理想状態が,センサ追加によってどの
ように締め切りミス率が上昇するかを調べ,結果を図
3に示した.

図 3: 最高優先度 (10ms)センサのセンサ追加による
締め切りミス率の推移
高頻度センサを追加した場合,締め切りミス率が大
幅に上昇し,低頻度センサを複数追加しても締め切り
ミス率の上昇が小さかったため,フレームワークは高
頻度センサ 1つのと低頻度センサ複数が限界だと考察
できる.
5.2 実験 2の結果と考察
表 1: 実験群（fwあり）の記述統計量（n = 12）

指標 標本数 平均値 中央値 標準偏差
1 APCC 12 25.0000 25.0000 0.0000
2 MI 12 66.6392 66.7000 0.1125
3 LCOM4(通常) 12 1.0000 1.0000 0.0000
4 LCOM4-NI 12 1.0000 1.0000 0.0000

表 2: 統制群（fwなし）の記述統計量（n = 12）
指標 標本数 平均値 中央値 標準偏差
1 APCC 12 39.7500 30.5000 1.5448
2 MI 12 57.8292 55.7100 4.8648
3 LCOM4(通常) 12 1.0000 1.0000 0.0000
4 LCOM4-NI 12 2.5833 2.0000 1.6765

表 3: Mann–Whitney の U検定結果
指標 U p値（片側） Cliff’s δ

1 APCC 0.0 0.0054 -1.0000
2 MI 144.0 0.0095 1.0000
3 LCOM4(通常) 72.0 1.0000 0.0000
4 LCOM4-NI 30.0 0.0014 -0.5833

APCCの低下により,実装難易度が低下したことが
示された．MIの上昇により,保守性の観点からフレー
ムワークが実装を改善する傾向が確認された．凝集度
指標に関しては，通常の LCOM4 では明確な低下は
観測されなかった一方，初期化メソッドの影響を除外

した LCOM4-NI では値の低下が確認された．統制群
のコードを確認すると，LCOM4-NI が高い実装はク
ラス内部に (1) 送信機能と (2) 周期のタイミング制御
の二つの責務が同居していた．その例を図 4に示す.

図 4: LCOM4=4.5のプログラム構造（責務の混在）
一方，LCOM4-NI が低い実装ではクラス内部に送
信機能のみを配置し，タイミング制御はクラス外に
記述されており，責務が分割されていた．したがって
LCOM4-NI は，非同期周期通信実装における責務分
割の有無を反映できる指標であることが示唆される．
さらに，フレームワークなし群では責務分離の有無に
ばらつきが見られたが，フレームワークあり群ではタ
イミング制御がフレームワーク側により自動化される
ため，タイミング制御をクラス内部に実装する必要が
なく，結果として責務分割が構造的に達成され,信頼
性が向上した可能性があることが明らかになった.

6 結論
フレームワークレベルでの優先度制御を導入するこ
とにより,タスクの締め切りミス率が低下することを
確認した. 特に,高頻度センサと低頻度センサが混在
する環境においても,高頻度センサの処理を優先する
ことで,リアルタイム性の要求に対して有効に機能す
ることが示された. ただし,高頻度センサを複数同時
使用する場合には,締め切りミス率が約 37%あり,安
定性が低い.高頻度センサ 1つと低頻度センサ複数な
ら運用可能である. また,フレームワーク化により実
装難易度は低下し,信頼性も向上した可能性が高い.
参考文献
[1] K.-H. Chen, Georg Von Der Brüggen, and

J.-J. Chen, “Analysis of deadline miss rates
for uniprocessor fixed-priority scheduling,”
2018 IEEE 24th International Conference on
Embedded and Real-Time Computing Systems and
Applications (RTCSA) (online), pp.168–178, 2018.
(DOI:10.1109/RTCSA.2018.00028)

[2] D. Coleman, D. Ash, B. Lowther, and P.
Oman, “Using metrics to evaluate software system
maintainability,” Computer (online), Vol.27, No.8,
pp.44–49, 1994. (DOI:10.1109/2.303623)

[3] S.R. Chidamber and C.F. Kemerer, “A metrics
suite for object oriented design,” IEEE Transactions
on Software Engineering (online), Vol.20, No.6,
pp.476–493, 1994. (DOI:10.1109/32.295895)

218

https://doi.org/10.1109/RTCSA.2018.00028
https://doi.org/10.1109/2.303623
https://doi.org/10.1109/32.295895

	G
	G-5

