

配列の未アクセス要素可視化による潜在バグ発見支援ツールの提案†

金谷 葵＊

A tool for discovering latent bugs by visualizing unaccessed array elements

Aoi Kanaya

1 はじめに

ソフトウェアテストは，プログラムの品質と信頼性を保

証する上で不可欠な工程である．しかし，テストコードに

変更がないにも関わらず，実行するたびに成功と失敗を繰

り返す Flaky Test（フレイキーテスト）は，テストの信頼

性を著しく損なう深刻な問題[1]として広く認識されている．

Eckらの調査では，開発者の 59%が週次または日次で Flaky

Testに対処していると報告されており[2]，これが単なる特

殊なケースではなく，開発現場で頻繁に発生する課題であ

ることがうかがえる．

Flaky Testが引き起こす問題の中でも，本来失敗して欠

陥を検出するべきテストが偶然成功してしまう「見過ごさ

れたアラーム(Missed Alarm)」は特に危険である[3]．この

現象は，プログラムに存在する欠陥を長期間にわたって隠

蔽してしまう可能性があり，実際，テストの実行順序に依

存するバグが原因で，Apache CLIライブラリ[4]の欠陥が 3

年以上も発見されなかった事例も報告されている[3]．

このような見過ごされたアラームは，テストの実行順序

だけでなく，単一テスト内で使用される入力データの内容

の依存によっても発生する[3]．

本来であれば網羅的なテストデータを用意することで回

避できるが，あらゆる組み合わせをテストすることはコス

トが高く，現実的ではない[5-7]．

そのため，特定の条件下でしか異常な出力とならないデ

ータ依存のバグは，テスト設計時に見落とされやすく[7]，

結果として「テストが成功したにも関わらず，欠陥がプロ

グラム内に残存してしまう」という事態を招く．本研究で

は，このようなバグを「潜在バグ」と定義する．

本研究は，潜在バグの中でも特に入力データ依存に起因

する「配列の未アクセスバグ」を対象とする．この種のバ

グは，特定の入力データ（例：配列の末尾が偶然最大値で

ある場合など）においてはプログラムの出力が正常に見え

るため，その発見は極めて困難である．Huo らも指摘する

ように，変数が使用されているにも関わらずその一部（特

定の要素）のみがアクセスされないという微細な挙動の検

出は難しい [6]．加えて，従来のデバッガや Fault

Localization技術の多くは，例外の発生やテストの「失敗」

をトリガーとして分析を行うため，テストが成功しエラー

ログも出力されない状況下では，開発者に調査のきっかけ

（起点）を提供することができない．

そこで本研究では，テスト成功時においても開発者にデ

バッグの起点を提供することを目的とし，入力データの内

容に関わらずバグの根本原因となりうる「配列の未アクセ

ス」という内部的な振る舞いを可視化するツール「Lacuna

（ラクーナ）」を提案する．本稿では，Lacuna が開発者の

潜在バグ発見と原因特定を支援できるかを定量的に評価し

た結果について述べる．

2 関連研究

テスト依存性の問題に対し，その検出を目的とした代表

的な研究に Zhangら[3]のものがある．彼らは，テストの実

行順序を逆順やランダムに入れ替えることで，結果が変化

するテスト（Order-Dependent Test）を特定するツール

DTDetectorを提案した．このアプローチは，テスト依存性

の存在を外部から特定する点で有効であるが，検出後の原

因究明は開発者に委ねられる．

 これに対し，依存性の検出だけでなく，デバッグそのも

のを支援するアプローチとして，実行トレースの可視化に

関する研究[8]がある．Shimariらが提案した NOD4Jは，特

に継続的インテグレーション（CI）環境など，インタラク

ティブなデバッガの利用が困難な状況を対象とする．NOD4J

は，実行トレースが肥大化する問題を，各命令ごとに記録

する値の数を制限することで解決し，テスト失敗時のプロ

グラムの振る舞いを効率的に調査する手段を提供する．

 表 1に本研究と関連研究のアプローチ比較を示す．本研

究は，これらの先行研究が持つ課題を補完するものである．

†本研究の一部は以下において発表した

・日本ソフトウェア科学会第 42回大会講演論文集 3c-1-R

＊電子情報メディア工学専攻 2248004 橋浦研究室

Zhangらのアプローチは依存性の有無を特定するが，出力が

正常な「見過ごされたアラーム」のケースで，なぜそれが

問題なのかという開発者の認知的な判断を支援するもので

はない．また，Shimari らの NOD4J は問題が顕在化した後

の詳細な原因分析には強力だが，本研究が対象とする「テ

ストは成功しているが，内部に欠陥が潜んでいる」という

状況の問題発見のきっかけを積極的に提供することに特化

しているわけではない．

表 1：関連研究とのアプローチの比較

研究 目的
対象状

況
検出対象

1
本研

究

潜在バグ発見支

援（きっかけの

提供）

テスト

成功時

配列の未アク

セス要素

2
Zhan

gら

テスト依存性有

無の検出

成功⇔

失敗の

変化時

テスト実行順

序の依存性

3

Shim

ari

ら

テスト失敗時の

振る舞い分析支

援

テスト

失敗時

失敗時の詳細

なプログラム

挙動

本研究は，これらの中間に位置し，入力データ依存に起

因する潜在バグ発見の最初のステップを支援する．すなわ

ち，バグの兆候である「配列の未アクセス」という見えな

い情報を可視化することで，開発者に調査の起点を提供し，

その後の原因特定プロセスへと繋げる点に独自性がある．

3 提案手法

本研究では，潜在バグの発見を支援するため，プログラム

実行時の配列アクセス状況を追跡・可視化するツール

「Lacuna（ラクーナ）」を提案する．

3.1 システム構成

 提案システムの全体構成を図 1 に示す．本システムは，

トレース取得を行う Electron アプリケーションと，デー

タ蓄積・可視化を行う Web アプリケーション（Spring

Boot + Vue.js）から構成される．

Lacuna のトレーサー部は，JDI (Java Debug

Interface) による動的解析に加え，ソースコードの静的

解析を併用するハイブリッド解析手法を実装している．実

行行のソースコードを解析して arr[i+1] 等のインデック

ス式を抽出し，JDI から取得した実行時の変数値を用いて

動的に評価することで，アクセスされた正確なインデック

ス値を算出・記録する．

3.2 デバッグ手順と可視化

デバッグの流れを 4段階に分けて示す．具体例として，

リスト 1に示す最大値探索プログラムを用いる．このコー

ドは，ループ条件の誤り「length – 1」により配列の末尾

要素が参照されないバグを含んでいるが，配列の最大値

99が偶然先頭にあるため，表面上の出力結果は正常とな

る「潜在バグ」の事例である．

リスト 1：バグを含む Javaコードの例

public static void main(String[] args) {
 int[] numbers = {99, 15, 45, 67, 32};
 int max = numbers[0];
 for (int i = 0; i < numbers.length - 1; i++)
{
 if (numbers[i] > max) {
 max = numbers[i];
 }
 }
}

1. プログラムの実行とトレース取得

 まず，Lacuna のホーム画面（図 2）から「デバッグ」

を選択し，トレーサー実行画面（図 3）へ遷移する．ここ

で対象の Java プログラムを選択して実行する．

2. 未アクセス要素の確認（制御パネル）

 次に，ホーム画面（図 2）から，「ドキュメント」を選

択し，制御パネルを確認する（図 4）．自動検出された未

（フロントエンド）

 トレースログ可視化
 配列未アクセス可視化
 デバッグ対象選択
 トレーサー実行

（バックエンド）

 連
 トレースログ

 トレースデータ 続化

 トレーサー

 実行イ ントの 視
 出力

デバッグ対象
（ 意の プログラム）

出力
 み み

図 1：提案システムの全体構成

図

アクセス要素をここで把握

する．

3. 分析範囲の絞り み（抽

出パネル）

問題の変数を特定した

後，抽出パネルでその変数

が使われている箇所に範囲

抽出設定を行う（図 5）．

4. 原因特定（分析パネル）

 範囲抽出設定後，メモリ

マップを確認する．ここで

は，配列要素のアクセス状

況を確認でき，アクセスさ

れた要素は白枠で表示され

る一方，未アクセス要素は

橙色でハイライト表示され

る（図 6）．このフィー

ドバックにより，「末

尾の要素だけが処 さ

れなかった」ことに気づくことできる．

図 6：本ツールの分析パネル

4 実験評価

 本実験では，本ツールが従来のデバッガより潜在バグの発

見に有効かを検証するため，RQ「出力異常がなくてもツー

ル利用でバグに気づけるか？」を設定した．被験者として

Java学習経験のある学生 20名を，実験群と統制群（各 10

名）に分け，4種類の潜在バグを含む課題プログラムのデバ

ッグを課した．課題には，マージソート，クイックソート，

統計値計算，累積和計算の 4種類の Javaプログラムを用い

た．これらには全て，配列の末尾要素が処 対象から漏れ

るという，潜在バグが意図的に埋め まれている．

 これらのバグを隠蔽し，「テストは成功するが内部に欠陥

が潜んでいる」という状況を再現するため，Javaエージェ

ントを利用してプログラムの動作を操作し，提供した入力

データでは出力が正常に見えるようにした．

 実験手順として，被験者にはバグの有無を知らせずにプ

ログラムの調査を依頼し，その過程と発見事項を事前に用

意した報告書に記述し提出するように指示した．タスクの

達成度は，被験者が提出した報告書を，表 2 の項目と表 3

に基づき採点した．そのうえで「RQ達成」の判断は，バグ

修正できた被験者は表 2の項番「2,4,5,6」が B評価以上で

あること，バグ修正できなかった被験者は項番「1,2,3,4」

が B評価以上であることを基準とした．

表 2：デバッグタスクの評価項目

フェーズ No. 評価項目

1

現象の把握と再現

1.1 問題の検知

2 1.2 具体的な現象の記述

3 1.3 現象再現の報告

4
原因範囲の特定

2.1 関連関数の特定

5 2.2 原因コード行の特定

6 原因メカニズム 解 3.1 誤りの直接原因報告

表 3：回答の明確性に関する評価基準

評価 定義

1 A 評価者が再現できるほど明確に回答

2 B 評価者が再現する際に迷いが生じる回答

3 C 言及がない・問いに回答できていない

5 考察

 実験結果は，本ツールが従来手法に比べ，潜在バグ発見を

図 4：本ツールの制御パネル

図 2：本ツールのホーム画面

図 3：本ツールのトレーサー実行画面

図 5：本ツールの抽出パネル

統計的に有意に支援（p < 0.01）することを示した（表 4）．

表 4：バグ検出率（RQ達成数）と群間比較

課題

実験群

(ツール

あり)

統制群

(ツール

なし)

p値

1 マージソート
40%

(4/10)

10%

(1/10)
0.303

2 統計値計算
30%

(3/10)

0%

(0/10)
0.311

3 クイックソート
30%

(3/10)

10%

(1/10)
0.582

4 累積和計算
70%

(7/10)

20%

(2/10)
0.07

5 全体
42.5%

(17/40)

10.0%

(4/40)
0.002

 実験群のバグ検出率（42.5%）は統制群（10.0%）を 4倍以

上上回り，この差は統計的にも有意であった（p < 0.01）．

これは，出力が正常に見えるという手がかりのない状況下

で，本ツールが「未アクセス要素の可視化」によって，こ

れまで発見が困難だった問題への調査の起点を提供したこ

とを意味する．

 しかし，同時に実験群の検出率が半数に満たなかったとい

う事実は，本ツールの有効性を最大限に引き出す上での課

題を浮き彫りにしている．この原因を明らかにするため，

バグを発見できなかった被験者の行動を分析した（表 5）．

表 5：バグ検出を妨げた要因と観測人数（実験群 N=10）

要因の

分類
具体的な行動・事象 観測数

1
誤った

焦点

ツールが警告を出しているメソ

ッドや変数ではなく，関係のな

い変数に固執して分析を続けた

6名

2 不注意

時系列に並んでいる配列情報を

最後まで確認せず，末尾の未ア

クセス要素を見落とした

5名

3
確証バ

イアス

プログラムの出力が正常である

ことを過信し，ツールの警告を

誤検知や仕様であると解釈した

1名

 その結果，最も頻発したつまずきは「誤った焦点」（6名）

や「不注意」（5名）といった被験者に起因する問題である

ことがわかった．具体的には，ツールが未アクセス箇所を

提示しているにも関わらず，関係のない変数に注目し続け

たり，ログ情報を最後まで確認しないことで，決定的な証

拠を見逃していた．

 また，一部の被験者は，出力が正常であることから，ツ

ールの未アクセス要素の指摘をバグとして認識しない事例

も確認できた．

 加えて，UIの視認性（横スクロールの見逃し）や，バグ

ではない未アクセス箇所も表示されることによる情報の過

多といったツール側の課題も，被験者の混乱を招き，原因

特定を妨げる一因となっていた．

 それに対しバグを発見できた被験者は，ツールの提示す

る未アクセス要素に注目し，ログ情報を丁寧に確認し，関

連する変数を意識的に追跡していた．具体的には main関数

から処 を追い，文脈に合わせて注目変数を変更すること

で，1つ 1つ分析を積み重ね，バグ発見につながっていた．

 これらの結果は，ツールがバグの"きっかけ"を提示して

も，利用者がその情報を正しく解釈し，活用する能動的な

デバッグ戦略を取らなければ，原因特定には至らないこと

を示唆している．以上を踏まえ本ツールの価値は，「不可視

な問題の可視化」によって，初学者・熟練者問わず，調査

の起点をすべての利用者に提供する点にある．

 今後の課題は，配列の未アクセスを可視化することによ

る「現象の提示」から，その可視化が本質的に何を示して

いるのかという「原因 解」への認知的なギャップを埋め

ることである．そのためには，ツールの UI改善や，ログ情

報のフィルタリング・要約による情報提示の最適化が求め

られる．さらに，ツール内に効果的な利用手順をガイドす

る機能を組み むなど，利用者の思考プロセスを積極的に

導く仕組みを整備することが，本ツールの潜在能力を最大

限に引き出し，検出率を向上させる上で不可欠であると認

識している．

参 考 文 献

1） O. Parry, G. M. Kapfhammer, M. Hilton, and P. McM

inn, "A Survey of Flaky Tests," ACM Trans. Softw. E

ng. Methodol., vol. 31, no. 1, pp. 17:1–17:74, Oct 202

1.

2） M. Eck, F. Palomba, M. Castelluccio, and A. Bacchell

i, "Understanding Flaky Tests: The Developer's Persp

ective," in Proc. 2019 27th ACM Joint Meeting on Eu

ropean Software Engineering Conference and Symposi

um on the Foundations of Software Engineering (ESE

C/FSE), pp. 830–840, Aug 2019.

3） S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M.

 D. Ernst, and D. Notkin, "Empirically Revisiting the

 Test Independence Assumption," in Proc. 2014 Intern

ational Symposium on Software Testing and Analysis

(ISSTA), pp. 385–396, Jul 2014.

4） Apache Software Foundation, "Apache Commons CLI,"

 [Online]. Available: https://commons.apache.org/proper

/commons-cli/, Jan 2026. (Accessed: 2026-01-05)

5） M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Not

kin, "Quickly Detecting Relevant Program Invariants,"

 in Proc. 22nd Int. Conf. Softw. Eng. (ICSE), pp. 449

–458, Jun 2000.

6） C. Huo and J. Clause, "Improving Oracle Quality by

Detecting Brittle Assertions and Unused Inputs in Te

sts," in Proc. 22nd ACM SIGSOFT Int. Symp. Found.

 Softw. Eng. (FSE), pp. 621–631, Nov 2014.

7） P. McMinn, "Search-Based Software Test Data Genera

tion: A Survey," Softw. Test. Verif. Reliab., vol. 14, no.

 2, pp. 105–156, Jun 2004.

8） K. Shimari, T. Ishio, T. Kanda, N. Ishida, and K. Ino

ue, "NOD4J: Near-Omniscient Debugging Tool for Jav

a Using Size-Limited Execution Trace," Sci. Comput.

Program., vol. 206, pp. 1–13, Jun 2021.

指導教授 審査委員（主査） 准教授 橋浦 弘明

 審査委員（副査） 教授 粂野 文洋

 審査委員（副査） 准教授 加藤 利康

